Learning Object Arrangements in 3D Scenes using Human Context
نویسندگان
چکیده
We consider the problem of learning object arrangements in a 3D scene. The key idea here is to learn how objects relate to human poses based on their affordances, ease of use and reachability. In contrast to modeling object-object relationships, modeling human-object relationships scales linearly in the number of objects. We design appropriate density functions based on 3D spatial features to capture this. We learn the distribution of human poses in a scene using a variant of the Dirichlet process mixture model that allows sharing of the density function parameters across the same object types. Then we can reason about arrangements of the objects in the room based on these meaningful human poses. In our extensive experiments on 20 different rooms with a total of 47 objects, our algorithm predicted correct placements with an average error of 1.6 meters from ground truth. In arranging five real scenes, it received a score of 4.3/5 compared to 3.7 for the best baseline method.
منابع مشابه
Edit Propagation using Geometric Analogies
Modeling complex geometrical shapes, like city scenes or terrains with dense vegetation, is a time-consuming task that cannot be automated trivially. The problem of creating and editing many similar, but not identical models requires specialized methods that understand what makes these objects similar in order to either create new variations of these models from scratch or to propagate edit ope...
متن کاملInteractive Learning of Spatial Knowledge for Text to 3D Scene Generation
We present an interactive text to 3D scene generation system that learns the expected spatial layout of objects from data. A user provides input natural language text from which we extract explicit constraints on the objects that should appear in the scene. Given these explicit constraints, the system then uses prior observations of spatial arrangements in a database of scenes to infer the most...
متن کامل3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملLabeling 3D scenes for Personal Assistant Robots
Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. We use this data to build 3D point clouds of a full scene. In this paper, we address the task of labeling objects in this 3D point cloud of a complete indoor scene such as an office. We propose a graphical model that captures various features and contextual relations, including the local visu...
متن کاملAugmented Reality Meets Deep Learning for Car Instance Segmentation in Urban Scenes
The success of deep learning in computer vision is based on the availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Unfortunately, creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm which combines real and syn...
متن کامل